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Abstract

Recent work in distance metric learning has produced numerous methods aimed
at learning transformations of data that best align with provided sets of pairwise
similarity and dissimilarity constraints. The learned transformations lead to im-
proved retrieval, classification, and clustering algorithms due to the more accurate
distance or similarity measures. Here, we introduce the problem of learning these
transformations when the underlying constraint generation process is dynamic.
These dynamics can be due to changes in either the ground-truth labels used to
generate constraints or changes to the feature subspaces in which the class struc-
ture is apparent. We propose and evaluate an adaptive, online algorithm for learn-
ing and tracking metrics as they change over time. We demonstrate the proposed
algorithm on both real and synthetic data sets and show significant performance
improvements relative to previously proposed batch and online distance metric
learning algorithms.

1 Introduction
The effectiveness of many machine learning and data mining applications rely on
an appropriate measure of pairwise distance between data points that accurately re-
flects the objective, e.g., prediction, clustering or classification. In settings with clean,
appropriately-scaled spherical Gaussian data, standard Euclidean distance can be uti-
lized. However, when the data is heavy tailed, multimodal, contaminated by outliers,
irrelevant or replicated features, or observation noise, Euclidean inter-point distance
can be problematic, leading to bias or loss of discriminative power.

As a result, many unsupervised, data-driven approaches for identifying appropriate
distances between points have been proposed. These methodologies, broadly taking the
form of dimensionality reduction or data “whitening”, aim to utilize the data itself to
learn a transformation of the data that embeds it into a space where Euclidean distance
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is appropriate. Examples of such unsupervised techniques include Principal Compo-
nent Analysis [2], Multidimensional Scaling [13], covariance estimation [13, 2], and
manifold learning [19]. Such unsupervised methods do not have the benefit of human
input on the distance metric, and overly rely on prior assumptions, e.g., local linearity
or smoothness.

This paper proposes methods for distance metric learning. In this problem one
seeks to learn linear transformations of the data that are well matched to a particular
task specified by the user. In this case, point labels or constraints indicating point sim-
ilarity or dissimilarity are used to learn a transformation of the data such that similar
points are “close” to one another and dissimilar points are distant in the transformed
space. Learning distance metrics in this manner allows a more precise notion of dis-
tance or similarity to be defined that is related to the task at hand.

Many supervised and semi-supervised distance metric learning approaches have
been developed [17]. This includes online algorithms [18] with regret guarantees for
situations where similarity constraints are received in a stream. In this paper, we pro-
pose a new way of formulating the distance metric learning task. We assume the un-
derlying ground-truth distance metric from which constraints are generated is evolving
over time. This problem formulation suggests an adaptive, online approach to track
the underlying metric as constraints are received. We present an algorithm for track-
ing distance metrics based on recent advances in composite objective mirror descent
for metric learning [10] (COMID) and the Strongly Adaptive Online Learning (SAOL)
framework proposed in [7].

1.1 Related Work
Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are
classic examples of linear transformations for projecting data into more interpretable
low dimensional spaces. Unsupervised PCA seeks to identify a set of axes that best
explain the variance contained in the data. LDA takes a supervised approach, minimiz-
ing the intra-class variance and maximizing the inter-class variance given class labeled
data points.

Much of the recent work in Distance Metric Learning has focused on learning Ma-
halanobis distances on the basis of pairwise similarity/dissimilarity constraints. These
methods have the same goals as LDA; pairs of points labeled “similar” should be
close to one another while pairs labeled “dissimilar” should be distant. MMC [25],
a method for identifying a Mahalanobis metric for clustering with side information,
uses semidefinite programming to identify a metric that maximizes the sum of dis-
tances between points labeled with different classes subject to the constraint that the
sum of distances between all points with similar labels be less than some constant.

Large Margin Nearest Neighbor (LMNN) [23] similarly uses semidefinite program-
ming to identify a Mahalanobis distance, however it modifies the constraints to only
take into account a small, local neighborhood for each point. In this setting, the algo-
rithm minimizes the sum of distances between a given point and its similarly labeled
neighbors while forcing differently labeled neighbors outside of its neighborhood. This
method has been shown to be computationally efficient [24] and, in contrast to the sim-
ilarly motivated Neighborhood Component Analysis [11], is guaranteed to converge to
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a globally optimal solution. Additionally, constraining the optimization based only on
a small neighborhood of points enables effective processing of multi-modal classes.

Information Theoretic Metric Learning (ITML) [8] is another popular Distance
Metric Learning technique. ITML minimizes the Kullback-Liebler divergence between
an initial guess of the matrix that parameterizes the Mahalanobis distance and a solution
that satisfies a set of constraints. The constraints in this setting are based on similarity
and dissimilarity pairs and are constructed such that similar pairs be within some close-
ness constant and dissimilar pairs be more distant than some larger constant. Online
and non-linear extensions to the ITML methodology are presented as well.

In a dynamic environment, it is necessary to be able to compute multiple estimates
of the changing metric at different times, and to be able to compute those estimates
online. Online learning [5] meets these criteria by efficiently updating the estimate
every time a new data point is obtained, instead of solving an objective function formed
from the entire dataset.

Many online learning methods have regret guarantees, that is, the loss in perfor-
mance relative to a batch method is provably small [5, 10]. In practice, however, the
performance of an online learning method is strongly influenced by the learning rate
which may need to vary over time in a dynamic environment [7, 21, 9].

Adaptive online learning methods attempt to address this problem by continu-
ously updating the learning rate as new observations become available. For exam-
ple, AdaGrad-style methods [21, 9] perform gradient descent steps with the step size
adapted based on the magnitude of recent gradients. Follow the regularized leader
(FTRL) type algorithms adapt the regularization to the observations [20]. Recently, a
method called Strongly Adaptive Online Learning (SAOL) has been proposed, which
maintains several learners with different learning rates and selects the best one based
on recent performance [7]. Several of these adaptive methods have provable regret
bounds [20, 15, 14]. These typically guarantee low total regret (i.e. regret from time 0
to time t) at every time [20]. SAOL, on the other hand, is guaranteed to have low regret
on every subinterval, as well as low regret overall [7].

The remainder of this paper is structured as follows. In Section 2 we formalize the
distance metric tracking problem, and section 3 reviews the existing COMID learning
framework. Section 4 introduces our adaptive approaches to solving the distance metric
tracking problem, and section 5 presents our Strongly Adaptive Online Metric Learning
algorithm. Results on both synthetic data and a text review dataset are presented in
Section 6 with discussion and future work presented in Section 7.

2 Problem Formulation
The goal of this work is to use analyst feedback to learn a metric on the data space
that best matches the goals of the analyst. We formulate the problem as a cooperative
dynamic game between the learner and the analyst. Both players’ goal is for the learner
to learn the internal metric M used by the analyst. The metric is changing over time,
making the game dynamic.

The analyst selects pairs of data points (xt, zt) and labels them as similar or dis-
similar. The labels are assumed to arrive in a temporal sequence, hence the labels at the
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beginning may have arisen from a different metric than those at the end of the sequence.
In sum, the learning goals include tracking the analyst’s internal metric in the pres-

ence of metric changes and noise, and (equivalently) finding an embedding which re-
sults in maximal separation of the clusters of interest to the analyst, enabling better
interpretation and/or future feedback from the analyst. Potential extensions which we
do not have the space to treat here include exploiting unlabeled data points [1], and/or
choosing which pairs or groups of pairs to present to the analyst (i.e. active learning
[22]).

2.1 Objective function
Metric learning seeks to learn a metric that encourages data points marked as similar to
be close and data points marked as different to be far apart. The Mahalonobis distance
is parameterized by M as

d2
M (x, z) = (x− z)TM(x− z) (1)

where M ∈ Rn×n � 0.
Suppose a set of similarity constraints are given, where each constraint is the triplet

(xt, zt, yt), xt and zt are data points in Rn, and the label yt = +1 if the points xt, zt
are similar and yt = −1 if they are dissimilar.

Following [18], we introduce the following margin based constraints:

d2
M (xt, zt) ≤ µ− 1, ∀{t|yt = 1} (2)

d2
M (xt, zt) ≥ µ+ 1, ∀{t|yt = −1}

where µ is a threshold that controls the margin between similar and dissimilar points.
A diagram illustrating these constraints and their effect is shown in Figure 1.

In typical fashion, these constraints are softened by penalizing violation of the con-
straints with a convex loss function `t. This gives the following objective:

min
M�0,µ≥1

1

T

T∑
t=1

`t(M, µ) + ρr(M) (3)

`t(M, µ) =`(mt), mt = yt(µ− uTt Mut), ut = xt − zt

where r is the regularizer. Kunapuli and Shavlik propose using nuclear norm regular-
ization (r(M) = ‖M‖∗) to encourage projection of the data onto a low dimensional
subspace (feature selection/dimensionality reduction).

3 Composite Objective Mirror Descent
One principled approach to online learning involves viewing the acquisition of new
data points as stochastic realizations of the underlying distribution, suggesting the use

4



Figure 1: Visualization of the margin based constraints (2), with colors indicating class.
The goal of the metric learning constraints is to move target neighbors towards the
point of interest (POI), while moving points from other classes away from the target
neighborhood.

of stochastic mirror descent techniques. The authors of [18] propose a composite ob-
jective mirror descent (COMID) approach to online metric learning that solves a regu-
larized positive semidefinite learning problem.

Using the COMID framework [10], for the objective (3) we have online learning
updates that iterate through the constraints

M̂t+1 = arg min
M�0

Bψ(M, M̂t) (4)

+ ηt〈∇M `t(M̂t, µt),M− M̂t〉+ ηtρ‖M‖∗
µ̂t+1 = arg min

µ≥1
Bψ(µ, µ̂t) + ηt∇µ`t(M̂t, µ̂t)

′(µ− µ̂t),

where Bψ is any Bregman divergence and ηt is the learning rate parameter. M̂0, µ̂0

are initialized to some initial value. In [18] a closed-form algorithm for solving the
minimization in (4) is developed for a variety of common losses and Bregman diver-
gences, involving rank one updates and eigenvalue shrinkage. A kernel version of the
algorithm is also available for the batch case.

By standard mirror descent analysis, this method has O(
√
T ) regret for the static

case when the learning rate is set as ηt = η/
√
t. For online learning of a static objec-

tive, the learning rate will decay to zero. However, in the case of a dynamic objective,
the learning rate must not decay to zero so that the estimate of the parameters will
be most strongly influenced by the recent constraint history. This was proposed in a
generic online learning scenario in [12], where low regret guarantees were derived,
which we extend to metric learning in the supplementary material. Critically, the op-
timal learning rate depends on how fast the objective is changing. We propose two
methods for addressing this issue and for learning distance metrics that change over
time in an arbitrary way.
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4 Dynamic Metric Learning Algorithms

4.1 Windowed Batch Approach
Intuitively, if the underlying metric is changing smoothly, the most recent samples are
the most relevant. Similarly to the covariance estimation method of [26], it is possible
to apply batch methods to learn a changing metric. At any given time the importance
of past samples are weighted by their recency, and a batch method is used to estimate
the current metric. This is then repeated at various times, giving in effect a weighted
sliding window of samples from which to learn. The resulting objective is

min
Mt�0,µt≥1

K∑
k=1

ak`k+t−K(Mt, µt) + ρr(Mt) (5)

where ak is such that
∑K
k=1 ak = 1. This function is convex. Nonrectangular windows

can be more difficult computationally, and repeated batch processing is not efficient.
In our experiments, we use COMID to solve the objective (5) at each step. Since

from t to t+ 1 the objective function only changes slightly if K is large enough and a
is sufficiently smooth, computational complexity is reduced by initializing the current
update with the previous estimate.

4.2 Adaptive Online Approach
In an online learning scenario where drift is occurring, as noted above, the choice of the
learning rate ηt can be critical. Furthermore, if discrete shifts and/or changes in drift
occur, the optimal ηt may change with time, and setting a drift rate dependent ηt using
cross validation is not practical in a truly online setting. Hence, a method of adaptively
choosing the learning rate in an online fashion is desirable.

Figure 2: Strongly Adaptive Online Learning - Learners at multiple scales run in par-
allel. Observed losses for each are used to create weights that are used to select the
current scale.
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Figure 3: Stochastic mirror descent learners and initialization. Each yellow and red
learner is initialized by the output of the previous learner of the same color, that is, the
learner of the next shorter scale.

While any method of adaptively setting ηt may be used, in this work we chose the
Strongly Adaptive Online Learning (SAOL) framework of [7] because of its ability to
perform well on every time subinterval.

SOAL proposes running a bank of multiple online base learners in parallel, each
having parameters optimized for learning on an interval of a different length, or alter-
natively in our case, for learning a metric that has its drift spread out over an interval
of a different length. SAOL then uses the recent history of losses suffered by each
learner to select the learner that is most accurate at the current time (Figure 2). SAOL
has strong theoretical guarantees on the regret on every subinterval, as opposed to the
traditional bounds on regret over the entire learning period. This guarantees that the
estimate will be sufficiently responsive to make it accurate at all times.

We use the COMID online learners of Section 3 (with learning rate ηt) as the base
learners. Algorithm 1 shows the SAOL algorithm applied to the metric learning prob-
lem. The next section explains SAOL and its implementation.

5 SAOML

5.1 SAOL Framework
We first describe the SAOL framework of [7]. SAOL is based on dyadically partitioning
the temporal axis into intervals and assigning a black box learner to each interval.
Specifically, define a set I of intervals I = [tI1, tI2] such that the lengths |I| of the
intervals are proportional to powers of two, i.e. |I| = I02j , with an arrangement that is
a dyadic partition of the temporal axis. The first interval of length |I| starts at t = |I|
(see Figure 2), and additional intervals of length |I| exist such that the rest of time is
covered.

Every interval I is associated with a base learner that operates on that interval.
Hence, at a given time t, a set ACTIVE(t) ⊆ I of floor(log2 t) intervals/learners are
active, running in parallel. The base learner of given interval I is designed to have low
total regret (O(

√
|I|)) on that interval in the static case. Because the parameters being

learned are changing with time, learners designed for low regret at different scales
will have different performance (analogous to the classic bias/variance tradeoff). In
other words, there is an optimal scale |I| that can be selected from the base learning
ensemble.
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Algorithm 1 Strongly Adaptive Online Metric Learning
1: Initialize: w1(I)
2: for t = 1 to T do
3: Initialize new learner if needed.
4: Choose Î ∈ ACTIVE(t) according to (10).
5: Mirror Descent update (4) for all active learners.
6: Set Mt ←Mt(Î), µt ← µt(Î)
7: Obtain constraint (xt, zt, yt), compute loss `t,log(·).
8: Update weights for all t ∈ I:

rt(I) =

(∑
I

wt(I)

Wt
`t,log(Mt(I), µt(I))

)
− `t,log(Mt(I), µt(I))

wt+1(I) =wt(I)(1 + min{1/2, 1/
√
|Ti|}rt(I))

9: end for
10: Return {Mt, µt}.

It remains to select the output of one of the active learners and use it as the final
estimate at any given time t. In [7], it is proposed to compute weights for each learner.
These weights are updated based on the learner’s recent estimated regret, which is
estimated as described below, and are used to randomly select a learner. In our work,
we update the weights according to

wt+1(I) =wt(I)(1 + ηIrt(I)), ∀t ∈ I (6)

rt(I) =

(∑
I

wt(I)

Wt
`t(Mt(I), µt(I))

)
− `t(Mt(I), µt(I))

for all I ∈ I, where ηI = min{1/2, 1/
√
|I|}, where Mt(I), µt(I) are the outputs at

time t of the learner on interval I , and rt(I) is called the estimated regret of the learner
on interval I at time t. Essentially, this is highly weighting low loss learners and lowly
weighting high loss learners.

For any given time t, the output of the learner of interval I ∈ ACTIVE(t) is
randomly selected as the output of the SAOL learner with probability

Pr(M̂t = Mt(I), µ̂t = µt(I)) =
wt(I)∑

I∈ACTIVE(t) wt(I)
,

∀I ∈ ACTIVE(t). (7)

In [7], SAOL assumes that the loss `(·) lies between 0 and 1. We propose a way to
apply this to our unbounded loss in the next subsection.
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5.2 Implementation
We note that [7] does not provide any further implementation details, and that selecting
a learner at random can be problematic.

For stochastic mirror descent learners, we propose the following approach. Let
each learner be a stochastic composite mirror descent learner (4) having a constant
learning rate proportional to the inverse square of the length of the interval, i.e. ηt(I) =
η0/
√
|I|.

Each mirror descent learner (besides the coarsest) at level j (|I| = I02j) is ini-
tialized to the current estimate of the next coarsest learner (level j − 1). Furthermore,
the weight wt is carried over from said coarser learner. This strategy is equivalent
to “backdating” the interval learners so as to ensure appropriate convergence has oc-
curred before the interval of interest is reached, and is effectively a “quantized square
root decay” of the learning rate (Figure 3).

In the SAOL framework, the loss must lie between 0 and 1. For convexity reasons,
the loss function we use in (3) is unbounded. However, this is a relaxation of the
underlying 0-1 loss. Hence for purposes of updating the weights, we use the logistic
loss

`t,log(xt|Mt, µt) = logistic

(
cmt

µt

)
(8)

where the argument is scaled by µt because only the relative scale of µt and Mt is
relevant to the similar/dissimilar boundary. The constant c scales the “buffer region”
created by the loss. We set c = 2 in all our experiments. Incorporating the logistic loss
into (6),

rt(I) =

(∑
I

wt(I)

Wt
`t,log(Mt(I), µt(I))

)
(9)

− `t,log(Mt(I), µt(I))

wt+1(I) =wt(I)(1 + ηIrt(I)), ∀t ∈ I.

In the original SAOL framework, the current estimates are selected randomly.
While this gives useful bounds on the expected regret, it means that a known poor es-
timate is chosen with nonzero probability. We instead propose the following: Choose
the I that minimizes the expected total Bregman divergence.

Î(t) = (10)

arg min
J∈ACTIV E(t)

∑
I∈ACTIV E(t)

Bψ(θt(I), θt(J))
wt(I)∑
I wt(I)

.

If Bψ is the Frobenius norm, then this is equivalent to choosing the estimate closest to
the expectation.

5.3 Performance Guarantees
In the game theory literature, learning rates for stochastic mirror descent techniques
have been developed to be able to play dynamic games, i.e., to solve optimization
problems that are changing over time [4, 6, 12, 16].
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In this section, we parameterize our convex loss as ft(θt) = `t(θt) + r(θt), where
θ = [M, µ]. Since the optimal parameter value is changing in a dynamic environment,
defining the static regret of an algorithm B on an interval I as

RB(I) =
∑
t∈I

ft(θ̂t)−min
θ∈Θ

∑
t∈I

ft(θ) (11)

is not useful.
A more useful generalization of the standard static regret is as follows. LetW be a

possible set of actions, in this case the set of possible sequencesw = {θt}t∈I satisfying
some criterion. This allows for a dynamically changing estimate. Then, the dynamic
regret of an algorithm B is defined as

RB(I) =
∑
t∈I

ft(θ̂t)− min
w∈W

∑
t∈I

ft(θt). (12)

In [12] the authors define dynamic regret by settingW = {w|
∑
t∈I ‖θt+1− θt‖ ≤

γ}, i.e. bounding the total amount of variation in the estimated parameter. Without
temporal regularization, minimizing the loss would cause θt to grossly overfit, hence
the constraint on how fast θt can change.

We now use this notion of dynamic regret and extend it to the stronger notion
of strongly adaptive regret. Following [7], we define strongly adaptive regret of an
algorithm A as

SA-RegretTA(τ) = max
I=[q,q+τ−1]⊂[0,T ]

E[RA(I)] (13)

where the expectation is with respect to the possibly random output of the algorithm.
We call an algorithmstrongly adaptive if SA-RegretTA(τ) = O(poly(log T )RP(τ)),
where RP(τ) is the regret of the learning problem, i.e. the best possible regret bound.

Low strongly adaptive regret implies that the dynamic regret is low on every subin-
terval, instead of only low in the aggregate. As a result, a strongly adaptive algorithm
must quickly adapt to changes, otherwise the subintervals immediately following the
change will not have low regret, even if the total regret over all time is low.

In the supplementary material, we prove the following:

Theorem 1 (SAOML). Let W = {w|
∑
t ‖θt+1 − θt‖ ≤ γ} and B be the COMID

algorithm of (4) with ηt(I) = η0/
√
|I| and fixed µ. Then the strongly adaptive online

learner SAOLB using B as the black box learners satisfies

RSAOL(I) ≤ 4

21/2 − 1
C(1 + γ)|I|1/2 + 40 log(s+ 1)|I|1/2 (14)

for some constant C and every interval I = [q, s]. In particular, SAOLB is strongly
adaptive.
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6 Results

6.1 Synthetic Data
We run our metric learning algorithms on synthetic datasets undergoing different types
of simulated metric drift. The first dataset we consider has three classes, with a 50-
20-30% split of the prior probability. Each class is associated with a Gaussian blob in
3-dimensional space, with each class having a different mean and covariance. For each
of 2000 data points, we select a class at random and generate a 3-dimensional point
from that classes’ Gaussian distribution. We then embed the 3-dimensional dataset in a
random subspace of a 25-dimensional space. The remaining 22-dimensional subspace
is filled with iid Gaussian noise.

We generate a series of T constraints from random pairs of points in the dataset,
incorporating simulated drift (described below), running each experiment with 1000
random trials. For each experiment conducted in this section, we evaluate performance
using three metrics. First the data points in the first two dimensions (as determined
by the SVD of M̂T ) of the final learned embedding, color coded according to their
true classes are shown. We plot the K-nearest neighbor error rate, using the learned
embedding at each time point, averaging over all trials. We quantify the clustering per-
formance by plotting the empirical probability that the normalized mutual information
(NMI) of the K-means clustering of the unlabeled data points in the learned embedding
at each time point exceeds 0.85 (out of a possible 1). We believe clustering NMI, rather
than k-NN performance, is a more realistic indicator of metric learning performance,
at least in the case where finding a relevant embedding is the primary goal.
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Figure 4: Dataset 1. The dataset remains fixed throughout, no drift occurs as the con-
straints are observed. Shown as a function of time is the mean k-NN error rate and the
probability the k-means NMI > 0.85. Note the failure of ITML and similar perfor-
mance of the remaining online and batch methods.

Figure 4 shows the static drift-free results for nonadaptive COMID, SAOML, LMNN
(batch), our weighted batch method, and online ITML. All parameters were set via
cross validation and remain constant through all experiments on the dataset. Online
ITML fails due to its bias agains low-rank solutions [8], and the other methods perform
comparably as there is no drift. Discrete drift where at time T/2 the 25 dimensions are
randomly permuted is shown in Figure 5, and continuous drift with a changing rate is
shown in Figure 6. To simulate continuous drift, at each time step we perform a small
random rotation of the dataset, and at time T/2 the rate of rotation is increased by a
factor of 6. It can be seen that the weighted batch and especially SAOML respond
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quickly to drift, performing significantly better than the nonadaptive COMID.
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Figure 5: Dataset 1. Random permutation of the data dimensions occurs at the halfway
point. Top to bottom: Nonadaptive COMID, adaptive SAOML, and the windowed
batch method. Note the slow recovery of the nonadaptive method after the change.

A second dataset identical to the one described above, except with an alternative
generative cluster model, was also used. For each of data points, we assign two classes
(corresponding to different possible partitions A and B of the data), both selected at
random, and for both generate a 3-dimensional point from that classes’ Gaussian dis-
tribution. The two points are then concatenated into a single 6-dimensional point. We
then embed the entire 6-dimensional dataset in a random subspace, with the remaining
dimensions filled with iid Gaussian noise as before.

The results for no drift are shown in Figure 7, similar to those found with the first
dataset. We also consider drift between partitions (Figure 8): At first, partition A is
used, and at time T/2, the labeling is changed to partition B. By way of interpretation,
the goal of metric learning is to identify the 3-dimensional subspace corresponding
to the labeling of interest, and project away the noisy subspaces, thus improving the
performance of secondary algorithms. The nonadaptive method fails to quickly catch
up to the shift, whereas SAOML effectively increases the learning rate parameter to
quickly learn the new paradigm.

6.2 Clustering Product Reviews
As an example real data task, we consider clustering Amazon text reviews, using the
Multi-Domain Sentiment Dataset [3]. We use the 11402 reviews from the Electronics

12
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Figure 6: Dataset 1. Continuous slow rotational drift of the dataset occurs, followed
by more rapid drift. From top to bottom: Nonadaptive COMID, SAOML, and the
weighted batch method. The nonadaptive method with its fixed learning rate performs
poorly during rapid drift relative to the adaptive methods.

and Books categories, and preprocess the data by computing word counts for each
review and 2369 commonly occurring words. Two possible clusterings of the reviews
are considered: product category (books or electronics) and sentiment (positive: star
rating 4/5 or greater, or negative: 2/5 or less).

Figures 9 and 10 show the first two dimensions of the embeddings learned by static
COMID for the category and sentiment clusterings respectively. Also shown are the 2-
dimensional standard PCA embeddings, and the k-NN classification performance both
before embedding and in each embeddings. As expected, metric learning is able to find
embeddings with improved class separability. We emphasize that while improvements
in k-NN classification are observed, we use k-NN merely as a way to quantify the
separability of the classes in the learned embeddings. In these experiments, we set the
regularizer r(·) to the L1 norm.

We then conducted drift experiments where the clustering changes. The change
happens after the metric learner for the original clustering has converged, hence the
nonadaptive learning rate is effectively zero. For each change, we show the k-NN error
rate in the learned SAOML embedding as it adapts to the new clustering. Emphasizing
the visualization and computational advantages of a low-dimensional embedding, we
computed the k-NN error after projecting the data into the first 5 dimensions of the
embedding. Also shown are the results for a learner where an oracle allows reinitial-
ization of the metric to the identity at time zero, and the nonadaptive learner for which

13
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Figure 7: Dataset 2. The dataset and labeling remains fixed throughout, no drift occurs.
Shown is the average performance for each method.
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Figure 8: Dataset 2: two possible clusterings of the data exist. For the first half, the
first clustering is used to generate the labels, and in the second half a switch is made to
the second possible clustering. Top: Average performance; Bottom: an example final
embedding for each method. Note the failure of the batch method (LMNN), and the
poor performance of the nonadaptive method.

the learning rate is not increased. Figure 11 (left) shows the results when the clustering
changes from the four class sentiment + type partition to the two class product type
only partition, and Figure 11 (right) shows the results when the partition changes from
sentiment to product type. In the first case, the similar clustering allows SAOML to
significantly outperform even the reinitialized method, and in the second remain com-
petitive where the clusterings are unrelated.

7 Conclusion and Future Work
We introduced the problem of metric learning in a changing environment, and pre-
sented an efficient, strongly adaptive online algorithm having strong theoretical per-
formance guarantees. Performance of our algorithms was evaluated both on synthetic
and real datasets, demonstrating the ability of SAOML to learn and adapt quickly in
the presence of changes both in the clustering of interest and in the underlying data
distribution.
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Figure 9: Metric learning for product type clustering. Book reviews blue, electronics
reviews red. Original LOO k-NN error rate 15.3%. Left: First two dimensions of
learned SAOML embedding (LOO k-NN error rate 11.3%). Right: embedding from
standard PCA (k-NN error 20.4%).
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Figure 10: Metric learning for sentiment clustering. Positive reviews blue, negative
red. Original LOO k-NN error rate 35.7%. Left: First two dimensions of learned
SAOML embedding (LOO k-NN error rate 23.5%). Right: embedding from standard
PCA (k-NN error 41.9%).

Potential directions for future work include the learning of more expressive metrics
beyond the Mahalanobis metric, the incorporation of unlabeled data points in a semi-
supervised learning framework, and the incorporation of an active learning framework
to select which pairs of data points to obtain labels for at any given time.
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1. Online DML Dynamic Regret
In this section, we derive the dynamic regret of our CO-
MID metric learning algorithm. Recall that the COMID
algorithm is given by

M̂t+1 = arg min
M�0

Bψ(M, M̂t) (1)

+ ηt〈∇M `t(M̂t, µt),M− M̂t〉+ ηtρ‖M‖∗
µ̂t+1 = arg min

µ≥1
Bψ(µ, µ̂t) + ηt∇µ`t(M̂t, µ̂t)

′(µ− µ̂t),

whereBψ is any Bregman divergence and ηt is the learning
rate parameter. From (Hall & Willett, 2015) we have:
Theorem 1.

G` = max
θ∈Θ,`∈L

‖∇f(θ)‖

φmax =
1

2
max
θ∈Θ
‖∇ψ(θ)‖

Dmax = max
θ,θ′∈Θ

Bψ(θ′‖θ)

Let the sequence θ̂t = [M̂t, µ̂t], t = 1, · · · , T be gener-
ated via the COMID algorithm, and let w be an arbitrary
sequence in W{w|

∑
t∈I ‖θt+1 − θt‖ ≤ γ}. Then using

ηt+1 ≤ ηt gives

RT (ΘT ) ≤ Dmax

ηT+1
+

4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (2)

Using a decaying learning rate ηt, we can then prove a
bound on the dynamic regret for a quite general set of
stochastic optimization problems.

Applying this to our problem, we obtain the following. As-
sume a fixed µ. Then for the estimation of Mt we have

G` = max
‖M‖≤c,t,µ

‖∇(`t(M, µ) + ρ‖M‖∗)‖2

φmax =
1

2
max
‖M‖≤c

‖∇ψ(M)‖2

Dmax = max
‖M‖,‖M′‖≤c

Bψ(M′‖M)

For `t(·) being the hinge loss and ψ = ‖ · ‖2F ,

G` ≤
√

(max
t
d2(xt, zt) + ρ)2

φmax = c
√
n

Dmax = 2c
√
n

where d(x, z) = ‖x − z‖2 is the standard Euclidean dis-
tance. The other two quantities are guaranteed to exist and
depend on the choice of Bregman divergence and c. Thus,
Corollary 1 (Dynamic Regret: ML COMID). Let the se-
quence M̂t, µ̂t be generated by (1), and let {Mt}Tt=1 be an
arbitrary sequence with ‖Mt‖ ≤ c and

∑T
t=1 ‖Mt+1 −

Mt‖F ≤ γ. Then using ηt+1 ≤ ηt gives

RT ({Mt}) ≤
Dmax

ηT+1
+

4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (3)

and setting ηt = η0/
√
T ,

RT ({Mt}) ≤
√
T

(
Dmax + 4φmaxV ({Mt})

η0
+
η0G

2
`

2σ

)
=O

(
√
T [1 +

∑
t

‖Mt+1 −Mt‖F ]

)
(4)

for any sequence {θt}.

Corollary 1 is a bound on the regret relative to the batch
estimate of Mt that minimizes the total batch loss subject
to a bounded variation

∑
t ‖Mt+1 −Mt‖F . Furthermore,

ηt = η0/
√
t gives the same bound as (4).

In other words, we pay a linear penalty on the total amount
of variation in the underlying parameter sequence. From
(4), it can be seen that the bound-minimizing η0 increases
with increasing

∑
t ‖Mt+1 −Mt‖F , indicating the need

for an adaptive learning rate.

For comparison, if the metric is in fact static then by
standard stochastic mirror descent results (Hall & Willett,
2015)
Theorem 2 (Static Regret). If M̂1 = 0 and ηt =
(2σDmax)1/2/(Gf

√
T ), then

RT ({Mt}) ≤ Gf (2TDmax/σ)1/2. (5)

2. Strongly Adaptive Regret
The following theorem is from (Daniely et al., 2015),
slightly modified to accomodate our different definition of
strongly adaptive regret.
Theorem 3. Fix a setW and choose an algorithm B such
that

RB(T ) ≤ CTα (6)
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for all T > 0 and some constants α ∈ (0, 1), C > 0. Then
the strongly adaptive online learner SAOLB using B as
the black box learners satisfies

RBSAOL(I) ≤ 4

2α − 1
C|I|α + 40 log(s+ 1)|I|1/2 (7)

for every interval I = [q, s]. In particular, SAOLB will be
strongly adaptive if α ≥ 1

2 and B has low regret.

Apply to low dynamic regret of mirror descent. (4) Corol-
lary 1.

From Corollary 1, COMID with ηt = η0/
√
T satisfies the

black-box learner condition (6) with α = 1/2. Hence, to
apply Theorem 3 to SAOML, it remains to normalize the
loss function to between 0 and 1.

As noted in Corollary 1, it is reasonable to assume that
‖M‖ ≤ c. Hence the loss function is bounded by
`t(Mt, µt) ≤ k = `(cmaxt ‖xt − zt‖22) and can be nor-
malized to the appropriate range. We thus have

Theorem 4 (SAOML). Let W = {w|
∑
t ‖θt+1 − θt‖ ≤

γ} and B be the COMID algorithm of (1) with ηt(I) =
η0/
√
|I| and fixed µ. Then the strongly adaptive online

learner SAOLB using B as the black box learners satisfies

RSAOL(I) ≤ 4

21/2 − 1
C(1 + γ)|I|1/2 + 40 log(s+ 1)|I|1/2

(8)

for some constant C and every interval I = [q, s]. In par-
ticular, SAOLB is strongly adaptive.

We note that this bound is stronger than those considered
in (Daniely et al., 2015) as it incorporates dynamic regret
in the definition of strongly adaptive regret.
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